1,030 | 2 | 565 |
下载次数 | 被引频次 | 阅读次数 |
水、能资源短缺及碳排放超标是制约区域经济转型升级和生态文明建设的主要障碍,探究水-能-碳系统耦合关系是实现区域绿色低碳发展的重要基础。以海河流域水-能-碳系统为核心,基于组合赋权法和综合分析法,构建流域水-能-碳系统综合评价体系,利用耦合协调度、障碍度和地理探测器模型,探究2000—2021年海河流域水-能-碳系统耦合协调时空演变特征及驱动因素。结果表明:(1)海河流域水-能-碳系统的综合发展水平总体上呈上升态势,碳排放系统处于最高位水平,评价指数多年平均值为0.45。(2)海河流域水-能-碳系统的耦合协调度总体上呈现平稳发展特征,发展水平由濒临失调过渡到中级协调阶段。(3)地表水资源量、污水处理能力、经济发展水平、产业结构、政府调控能力和居民生活水平是制约水-能-碳系统发展最大的障碍因子和外部驱动因素。研究结果可为促进海河流域经济社会全面绿色转型和可持续发展提供理论支撑。
Abstract:The shortage of water and energy resources, as well as excessive carbon emissions, are the main obstacles that constrain the transformation and upgrading of regional economy and the construction of ecological civilization. Exploring the coupling relationship between water energy carbon system is an important foundation for achieving green and low-carbon development in the region. Based on the combination weighting method and comprehensive analysis method, a comprehensive evaluation system for the water energy carbon system in the Haihe River Basin is constructed with the water energy carbon system as the core. Based on the coupling coordination degree, barrier degree and geographic detector model, the spatial and temporal evolution characteristics and driving factors of water-energy-carbon coupling coordination in Haihe River Basin from 2000 to 2021 were investigated. The results are as follows. Firstly, the comprehensive development level of the water energy carbon system in the Haihe River Basin is generally on the rise, with the carbon emission system at the highest level and an average evaluation index of 0.45 over the years. Secondly, the coupling coordination degree of the water energy carbon system in the Haihe River Basin generally shows a stable development characteristic, with the development level transitioning from near imbalance to intermediate coordination stage. Thirdly, the amount of surface water resources, sewage treatment capacity, economic development level, industrial structure, government regulation capacity, and residents′ living standards are the biggest obstacles and external driving factors that constrain the development of the water energy carbon system. The research results can provide theoretical support for promoting the comprehensive green transformation and sustainable development of the economic and social development in the Haihe River Basin.
[1] 赵荣钦,李志萍,韩宇平,等.区域“水-土-能-碳”耦合作用机制分析[J].地理学报,2016,71(9):1613-1628.
[2] 张抗,苗淼,张立勤.“双碳”目标与中国能源转型思考(一):能源转型与碳达峰、碳中和[J].中外能源,2022,27(3):1-6.
[3] 高启慧,秦圆圆,梁媚聪,等.IPCC第六次评估报告综合报告解读及对我国的建议[J].环境保护,2023,51(增刊2):82-84.
[4] LIANG M S,HUANG G H,CHEN J P,et al.Energy-water-carbon nexus system planning:a case study of Yangtze River Delta urban agglomeration,China[J].Applied energy,2022,308:118144.
[5] TAN Q L,LIU Y,YE Q Z.The impact of clean development mechanism on energy-water-carbon nexus optimization in Hebei,China:a hierarchical model based discussion[J].Journal of environmental management,2020,264:110441.
[6] SUO C,LI Y P,MEI H,et al.Towards sustainability for China′s energy system through developing an energy-climate-water nexus model[J].Renewable and sustainable energy reviews,2021,135:110394.
[7] 赵荣钦,余娇,肖连刚,等.基于“水-能-碳”关联的城市水系统碳排放研究[J].地理学报,2021,76(12):3119-3134.
[8] 王建华,朱永楠,李玲慧,等.社会水循环系统水-能-碳纽带关系及低碳调控策略研究[J].水利发展研究,2023,23(9):56-65.
[9] GU Y F,DONG Y N,WANG H T,et al.Quantification of the water,energy and carbon footprints of wastewater treatment plants in China considering a water-energy nexus perspective[J].Ecological indicators:integrating,monitoring,assessment and management,2016,60:402-409.
[10] 郑靖伟,孙才志.不同尺度下水-能-碳系统空间关联关系分析[J].华北水利水电大学学报(自然科学版),2024,45(2):36-47.
[11] 王菲,曹永强,范帅邦.“双碳”目标下东北三省水-能源纽带关系及网络特征分析[J].生态学报,2022,42(14):5692-5707.
[12] JIN X Y,JIANG W R,FANG D L,et al.Evaluation and driving force analysis of the water-energy-carbon nexus in agricultural trade for RCEP countries[J].Applied energy,2024,353:122143.
[13] VALEK A M,SU■.Quantification of the urban water-energy nexus in México City,México,with an assessment of water-system related carbon emissions[J].Science of the total environment,2017,590:258-268.
[14] 孙贵艳,王胜,肖磊.基于夜间灯光数据的长江上游地区能源消费碳排放及影响因素研究[J].地域研究与开发,2020,39(4):159-162.
[15] 李可欣,曹永强,范帅邦,等.东北三省“水-能-碳”系统仿真模拟:基于系统动力学模型[J].生态学报,2023,43(17):6999-7011.
[16] HUANG J,TAN Q,ZHANG T Y,et al.Energy-water nexus in low-carbon electric power systems:a simulation-based inexact optimization model[J].Journal of environmental management,2023,338:117744.
[17] GARGARI L S,JODA F,AMERI M.A techno-economic assessment for the water-energy-carbon nexus based on the development of a mathematical model:in the iron and steel industry[J].Sustainable energy technologies and assessments,2024,63:103653.
[18] TAN S Q,YAO L M.Managing and optimizing urban water supply system for sustainable development:perspectives from water-energy-carbon nexus[J].Sustainable production and consumption,2023,37:39-52.
[19] 张国丰,王瑞贤,刘美玉.“水-能-碳”约束下河北省可持续发展能力评价[J].河北环境工程学院学报,2023,33(5):50-58,82.
[20] 赵良仕,刘思佳,孙才志.黄河流域水-能源-粮食安全系统的耦合协调发展研究[J].水资源保护,2021,37(1):69-78.
[21] 陈红光,李晓宁,李晨洋.基于变异系数熵权法的水资源系统恢复力评价:以黑龙江省2007—2016年水资源情况为例[J].生态经济,2021,37(1):179-184.
[22] 李可欣.东北三省“水-能-碳”系统耦合协调性研究[D].大连:辽宁师范大学,2023.
[23] 张少然,李玲,陈帅奇,等.郑州都市圈新型城镇化、生态环境、碳排放耦合协调分析[J].河南农业大学学报,2023,57(3):471-482,492.
[24] 邓健,刘文新.吉林省水-能源-粮食系统耦合协调度评价研究[J].水利水电技术(中英文),2023,54(10):126-136.
[25] 王淑佳,孔伟,任亮,等.国内耦合协调度模型的误区及修正[J].自然资源学报,2021,36(3):793-810.
[26] 李成宇,张士强.中国省际水-能源-粮食耦合协调度及影响因素研究[J].中国人口·资源与环境,2020,30(1):120-128.
[27] 姚成胜,滕毅,黄琳.中国粮食安全评价指标体系构建及实证分析[J].农业工程学报,2015,31(4):1-10.
[28] 王劲峰,徐成东.地理探测器:原理与展望[J].地理学报,2017,72(1):116-134.
[29] 方世巧,赖俊武,滕容梅.数字经济与旅游业高质量发展的耦合协调关系及互动效应研究:以西部民族地区为例[J].资源开发与市场,2023,39(11):1489-1497.
[30] 李玉婷,王议寒,刘自敏.中国城市“水-能源-粮食”纽带系统耦合协调度及其影响因素研究[J].工业技术经济,2023,42(6):97-105.
[31] 杨屹,张园园.呼包鄂榆资源型城市群“水-能-碳”耦合变化及影响因素[J].中国环境科学,2023,43(11):6212-6224.
[32] 宾零陵,蒋睿文,曹永强,等.京津冀水资源生态足迹动态变化与预测[J].水资源保护,2023,39(5):32-38,57.
基本信息:
DOI:10.19760/j.ncwu.zk.2024062
中图分类号:TV213.4;F426.2
引用信息:
[1]李情情,曹永强,王菲等.海河流域水-能-碳系统耦合协调发展及驱动因素研究[J].华北水利水电大学学报(自然科学版),2024,45(06):20-31+40.DOI:10.19760/j.ncwu.zk.2024062.
基金信息:
国家自然科学基金项目(52379021,52079060); “一带一路”水与可持续发展科技重点基金项目(2021nkzd02)