nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 02, v.46 23-31
基于MODIS数据的太湖蓝藻水华监测方法比较与分析
基金项目(Foundation): 国家自然科学基金项目(42101362); 河南省科技攻关项目(232102111123)
邮箱(Email):
DOI: 10.19760/j.ncwu.zk.2025019
摘要:

蓝藻水华的暴发会对水体生态系统造成严重影响,不同的蓝藻水华监测方法得到的结果存在较大差异。以太湖为研究对象,利用MODIS影像产品和地表分类数据,提取了太湖水域范围,并分别采用波段比值、归一化植被指数、浮游藻类指数和支持向量机、随机森林等算法提取了2010—2022年太湖蓝藻的暴发区域。通过对比分析,评价了各种方法基于MODIS影像对太湖蓝藻水华空间和时间的监测效果及适用性。5种方法的结果表明:太湖蓝藻水华2010—2014年趋于稳定,2015年开始暴发,之后规模逐渐增大,并于2021年达到顶峰,然后在2022年突然大幅度下降;支持向量机算法监测结果的一致性最好,平均Kappa系数达到0.77,结果最准确和稳定;归一化植被指数监测结果的一致性较差,平均Kappa系数仅为0.61,结果存在较大不确定性。与太湖藻华产品对比后发现,各方法在准确性和稳定性上存在差异,支持向量机算法在监测中表现最佳应优先考虑使用。但单一方法都存在不足,需进一步优化和融合,找到最适合特定场景的解决方案。

Abstract:

Accurate monitoring of cyanobacterial blooms is critical for aquatic ecosystem management, yet methodological discrepancies in remote sensing approaches remain unresolved. This study focuses on Lake Taihu and utilizes MODIS satellite imagery and land cover classification data to extract the spatial extent of cyanobacterial blooms in the lake. Five methods, including band ratio, normalized difference vegetation index(NDVI), floating algae index(FAI), support vector machine(SVM), and random forest(RF), are employed to estimate the outbreak areas of cyanobacterial blooms(2010—2022). Temporal analysis revealed distinct bloom dynamics: relatively stable conditions during 2010—2014 were followed by escalating outbreaks from 2015 onward, peaking in 2021 before an abrupt decline in 2022. Quantitative validation through Kappa statistics demonstrated SVM′s superior performance(mean k=0.77), significantly outperforming NDVI(k=0.61), which exhibited substantial spatial-temporal inconsistency. When compared with the Taihu algal blooms product, the monitoring results of various methods show differences in accuracy and stability, while the SVM algorithm demonstrates the best performance. Therefore, this study proposes an adaptive monitoring framework combining SVM′s classification robustness with FAI′s sensitivity to early-stage blooms. Our findings emphasize the necessity for context-specific algorithm selection and highlight the potential of hybrid approaches for operational monitoring systems.

参考文献

[1] 来莱,张玉超,景园媛,等.富营养化水体浮游植物遥感监测研究进展[J].湖泊科学,2021,33(5):1299-1314.

[2] 冯炼.卫星遥感解译湖泊蓝藻水华的几个关键问题探讨[J].湖泊科学,2021,33(3):647-652.

[3] 晁明灿,赵强,杨铁利,等.基于Landsat8影像的蓝藻水华提取方法对比研究[J].大气与环境光学学报,2021,16(6):520-528.

[4] 张娇,陈莉琼,陈晓玲.基于FAI方法的洱海蓝藻水华遥感监测[J].湖泊科学,2016,28(4):718-725.

[5] 段洪涛,张寿选,张渊智.太湖蓝藻水华遥感监测方法[J].湖泊科学,2008(2):145-152.

[6] 尚琳琳,马荣华,段洪涛,等.利用MODIS影像提取太湖蓝藻水华的尺度差异性分析[J].湖泊科学,2011,23(6):847-854.

[7] 周婷,刘小妮,戚王月,等.基于GF1卫星影像的巢湖蓝藻时空演变特征分析[J].华北水利水电大学学报(自然科学版),2020,41(3):62-66.

[8] 袁俊,曹志刚,马金戈,等.1980s以来巢湖藻华物候时空变化遥感分析[J].湖泊科学,2023,35(1):57-72.

[9] 张东彦,尹勋,佘宝,等.多源卫星遥感数据监测巢湖蓝藻水华爆发研究[J].红外与激光工程,2019,48(7):303-314.

[10] 刘海秋,任恒奎,牛鑫鑫,等.基于Sentinel-2遥感影像的巢湖蓝藻水华提取方法研究[J].生态环境学报,2021,30(1):146-155.

[11] 夏晓瑞,韦玉春,徐宁,等.基于决策树的Landsat TM/ETM+图像中太湖蓝藻水华信息提取[J].湖泊科学,2014,26(6):907-915.

[12] 朱广伟,施坤,李未,等.太湖蓝藻水华的年度情势预测方法探讨[J].湖泊科学,2020,32(5):1421-1431.

[13] 陈云,戴锦芳.基于遥感数据的太湖蓝藻水华信息识别方法[J].湖泊科学,2008,20(2):179-183.

[14] 马荣华,孔繁翔,段洪涛,等.基于卫星遥感的太湖蓝藻水华时空分布规律认识[J].湖泊科学,2008,20(6):687-694.

[15] 祁国华,马晓双,何诗瑜,等.基于多源遥感数据的巢湖水华长时序时空变化(2009—2018年)分析与发生概率预测[J].湖泊科学,2021,33(2):414-427.

[16] 张虎军,宋挺,朱冰川,等.太湖蓝藻水华暴发程度年度预测[J].中国环境监测,2022,38(1):157-164.

[17] CAO H Y,HAN L,LI L Z.A deep learning method for cyanobacterial harmful algae blooms prediction in Taihu Lake,China[J].Harmful Algae,2022,113:102189.

[18] ANANIAS P H M,NEGRI R G,DIAS M A,et al.A fully unsupervised machine learning framework for algal bloom forecasting in inland waters using MODIS time series and climatic products[J].Remote Sensing,2022,14(17):4283.

[19] WAN Z M,LI Z L.A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(4):980-996.

[20] HUETE A,JUSTICE C,LIU H.Development of vegetation and soil indices for MODIS-EOS[J].Remote Sensing of Environment,1994,49(3):224-234.

[21] 马金戈,段洪涛.全球大型湖泊藻华分布产品(2000—2021年,250 m分辨率)(ABGL250_2000-2021)[DS/OL].(2023-03-22)[2025-02-12].https://data.casearth.cn/dataset/640f00fd819aec3f2b52a4a1.

[22] FRIEDL M A,SULLA-MENASHE D,TAN B,et al.MODIS Collection 5 global land cover:algorithm refinements and characterization of new datasets[J].Remote Sensing of Environment,2010,114(1):168-182.

基本信息:

DOI:10.19760/j.ncwu.zk.2025019

中图分类号:X832;X87

引用信息:

[1]王健,张逸飞,智力等.基于MODIS数据的太湖蓝藻水华监测方法比较与分析[J].华北水利水电大学学报(自然科学版),2025,46(02):23-31.DOI:10.19760/j.ncwu.zk.2025019.

基金信息:

国家自然科学基金项目(42101362); 河南省科技攻关项目(232102111123)

检 索 高级检索