256 | 0 | 13 |
下载次数 | 被引频次 | 阅读次数 |
【目的】为研究渡槽结构的抗震韧性,基于OpenSees,针对南水北调工程中某梁式渡槽建立了有限元分析模型,考虑地震动、结构参数等因素的不确定性,对渡槽的双柱槽墩、盖梁处板式橡胶支座以及槽台处聚四氟滑板支座进行了渡槽构件的地震易损性分析。【方法】采用条件边缘乘积法建立渡槽结构系统的地震易损性曲线,计算了渡槽结构系统和构件的抗震韧性。【结果】采用改进条件边缘乘积法的渡槽结构系统,相较于单一构件,展现出更低的抗震韧性;渡槽两种支座的抗震性能较差,相较于槽墩更易受损;双柱槽墩的抗震韧性最佳,盖梁处板式橡胶支座的次之,结构系统的最差;基于槽墩单一构件来评价结构系统的抗震韧性最多可高估66.8%。对抗震性能分析显示:地震峰值加速度在0.2g~0.6g范围内时,渡槽结构系统的抗震韧性会大幅下降;当地震峰值加速度超过0.4g,渡槽结构的抗震韧性可降至0.6以下,显示出较弱的抗震性能。【结论】对于抗震设防烈度8度以上的地震高烈度地区,需关注渡槽结构的安全。
Abstract:【Objective】To explore the seismic resilience of aqueduct structures, this study develops a finite element analysis model for a beam-type aqueduct from the South-to-North Water Diversion Project based on OpenSees. Taking into account the uncertainties associated with ground motions and structural parameters, seismic vulnerability analysis is conducted on key components, such as double-column piers, elastomeric bearings at the cap beam, and polytetrafluoroethylene sliding bearings at the abutments. 【Methods】 The conditional marginal product method was employed to construct seismic vulnerability curves for the aqueduct structural system. The seismic resilience of the aqueduct structural system and its components was quantified. 【Results】 The aqueduct structural system, assessed using the improved conditional marginal product method, exhibited lower resilience compared to individual components. Among components, bearings demonstrated poorer seismic performance and higher vulnerability than piers. The double-column piers showed the highest resilience, followed by the elastomeric bearings at the cap beam, while the structural system exhibited the lowest resilience. Evaluating the seismic resilience of the structural system solely based on piers could overestimate the seismic resilience by up to 66.8%. Seismic performance analysis revealed that when peak ground acceleration(PGA) was within the range of 0.2g-0.6g, the seismic resilience of the aqueduct structural system declined significantly. When the PGA exceeded 0.4g, the seismic resilience of the aqueduct structure dropped below 0.6, indicating weak seismic performance. 【Conclusion】 Special attention should be paid to the seismic safety of aqueduct structures in regions with the seismic fortification intensity above 8 degrees.
[1] 许新勇,刘旭辉,蒋莉.强震作用下大型渡槽结构地震动力破坏机理分析[J].华北水利水电大学学报(自然科学版),2014,34(4):48-55.[XU X Y,LIU X H,JIANG L.Analysis on seismic dynamic failure mechanism of large aqueduct structure under strong earthquake[J].Journal of North China University of Water Resources and Electric Power(Natural Science Edition),2014,34(4):48-55.]
[2] LIU C Q,FANG D J,ZHAO L J.Reflection on earthquake damage of buildings in 2015 Nepal earthquake and seismic measures for post-earthquake reconstruction[J].Structures,2021,30:647-658.
[3] HOHENBICHLER M,RACKWITZ R.First-order concepts in system reliability[J].Structural Safety,1981,1(3):177-188.
[4] NIELSON B G.Analytical fragility curves for highway bridges in moderate seismic zones[D].Atlanta:Georgia Institute of Technology,2005.
[5] PANDEY M D.An effective approximation to evaluate multinormal integrals[J].Structural Safety,1998,20(1):51-67.
[6] YUAN X X,PANDEY M D.Analysis of approximations for multinormal integration in system reliability computation[J].Structural Safety,2006,28(4):361-377.
[7] 涂宏茂,钱云鹏,姬广振,等.改进的结构系统可靠度的条件边缘乘积法[J].工程力学,2012,32(10):321-326.[TU H M,QIAN Y P,JI G Z,et al.An improved product of conditional marginal methodfor structural system reliability analysis[J].Engineering Mechanics,2012,32(10):321-326.]
[8] KALKAN E,KUNNATH S K.Seismic damage and loss estimation in building structures[J].Earthquake Spectra,2006,22(3):731-751.
[9] ZHAO W,HAO H.Assessment of earthquake-induced damage and functional loss of transportation systems[J].Earthquake Engineering and Structural Dynamics,2010,39(13):1465-1488.
[10] YANG X,LI H.Quantification of earthquake-induced damage and recovery of building systems[J].Earthquake Engineering & Structural Dynamics,2014,43(4):599-616.
[11] 李喜梅,叶苏,杨国俊.基于系统易损性的连续梁桥抗震韧性改进评估方法[J].武汉大学学报(工学版),2024,57(12):1716-1724.[LI X M,YE S,YANG G J.Improved evaluation method for seismic resilience of continuous beam bridges based on system vulnerability[J].Engineering Journal of Wuhan University,2024,57(12):1716-1724.]
[12] 李红旭.在建连续梁桥的地震易损性及韧性研究[D].哈尔滨:中国地震局工程力学研究所,2020.[LI H X.Study of seismic vulnerability and resilience for continuous girder bridge under construction[D].Harbin:Institute of Engineering Mechanics,China Earthquake Administration,2020.]
[13] 俎林,黄勇.维修加固桥梁的抗震韧性评价方法[J].地震研究,2020,43(3):522-530.[ZU L,HUANG Y.Evaluation method for seismic resilience of maintenance bridges[J].Journal of Seismological Research,2020,43(3):522-530.]
[14] FORCELLINI D.An expeditious framework for assessing the seismic resilience (SR) of structural configurations[J].Structures,2020,56:105015.
[15] 李锋,张鹏超,李慧敏,等.水网结构对多灾害情景的韧性响应研究[J].华北水利水电大学学报(自然科学版),2024,45(1):63-72,108.[LI F,ZHANG P C,LI H M,et al.Research on the resilience response of water network structure to multiple disaster scenarios[J].Journal of North China University of Water Resources and Electric Power(Natural Science Edition),2024,45(1):63-72,108.]
[16] 冀昆.我国不同抗震设防需求下的强震动记录选取研究[D].哈尔滨:中国地震局工程力学研究所,2018.[JI K.Strong ground motion selection for multiple levels of seismic fortification demand in China[D].Harbin:Institute of Engineering Mechanics,China Earthquake Administration,2018.]
[17] CHOPRA A K,GOEL R K.A modal pushover analysis procedure for estimating seismic demands for buildings[J].Earthquake Engineering & Structural Dynamics,2002,31(3):561-582.
[18] 张菊辉.基于数值模拟的规则梁桥墩柱的地震易损性分析[D].上海:同济大学,2006.[ZHANG J H.Study on seismic vulnerability analysis of normal beam bridge piers based on numerical simulation[D].Shanghai:Tongji University,2006.]
[19] 曾武华,王逢朝,卓卫东.钢筋混凝土桥墩位移延性系数概率分析[J].工程抗震与加固改造,2016,38(5):33-37.[ZENG W H,WANG F C,ZHUO W D.Probability analysis for displacement ductility factor of RC bridge columns[J].Earthquake Resistant Engineering and Retrofitting,2016,38(5):33-37.]
[20] 杨帆.板式橡胶支座地震易损性分析[D].石家庄:石家庄铁道大学,2019.[YANG F.Research on the seismic vulnerability analysis of laminated rubber bearing[D].Shijiazhuang:Shijiazhuang Tiedao University,2019.]
[21] ZHANG J,HUO Y L.Evaluating effectiveness and optimum design of isolation devices for highway bridges using the fragility function method[J].Engineering Structures,2009,31(8):1648-1660.
[22] KOTZ S,BALAKRISHNAN N,JOHNSON N L.Continuous Multivariate Distributions Volume 1:Models and Applications[M].Hoboken:John Wiley & Sons,2019.
[23] MAGHSOUDI-BARMI A,KHANSEFID A,KHALOO A,et al.Probabilistic seismic performance assessment of optimally designed highway bridge isolated by ordinary unbonded elastomeric bearings[J].Engineering Structures,2021,247:113058.
[24] ALI A G,DONG Y,ZHAI C H.Performance-based probabilistic framework for seismic risk resilience and sustainability assessment of reinforced concrete structures[J].Advances in Structural Engineering,2020,23(7):1454-1470.
[25] DECò A,BOCCHINI P,FRANGOPOL D M.A probabilistic approach for the prediction of seismic resilience of bridges[J].Earthquake Engineering & Structural Dynamics,2014,43(10):1469-1487.
[26] ZHENG Y,DONG Y,LI Y H.Resilience and life-cycle performance of smart bridges with shape memory alloy (SMA)-cable-based bearings[J].Construction and Building Materials,2018,158:389-400.
[27] HU S C,CHEN B K,SONG G Q,et al.Resilience-based seismic design optimization of highway RC bridges by response surface method and improved non-dominated sorting genetic algorithm[J].Bulletin of Earthquake Engineering,2020,20(1):449-476.
[28] PANG Y T,WEI K,YUAN W C.Life-cycle seismic resilience assessment of highway bridges with fiber-reinforced concrete piers in the corrosive environment[J].Engineering Structures,2020,222:111120.
[29] 杨国俊,田里,杜永峰,等.基于修复函数的连续梁桥抗震韧性因素及改进评估研究[J].土木工程学报,2022,55(增刊1):219-226.[YANG G J,TIAN L,DU Y F,et al.Research on seismic resilience factors and improved evaluation of continuous beam bridges based on recovery function[J].China Civil Engineering Journal,2022,55(S1):219-226.]
[30] FU Z J,GAO R,LI Y M.Probabilistic seismic resilience-based cost-benefit analysis for bridge retrofit assessment[J].Arabian Journal for Science and Engineering,2020,45(10):8457-8474.
[31] 寇峥,李宁.基于NSGA-Ⅱ的城市桥梁系统震后可恢复性分析与优化[J].工程力学,2021,38(3):148-158,180.[KOU Z,LI N.Study on earthquake resilience analysis and optimization for urban bridge network system based on NSGA-Ⅱ algorithm[J].Engineering Mechanics,2021,38(3):148-158,180.]
[32] SHAHRAKI H,SHABAKHTY N.Seismic performance reliability of RC structures:application of response surface method and systemic approach[J].Civil Engineering Infrastructures Journal,2015,48(1):47-68.
基本信息:
DOI:10.19760/j.ncwu.zk.2025061
中图分类号:TV672.3;TV312
引用信息:
[1]张天宇,李嘉博,黄海燕等.基于易损性的渡槽结构系统抗震韧性评价[J].华北水利水电大学学报(自然科学版),2025,46(04):92-102.DOI:10.19760/j.ncwu.zk.2025061.
基金信息:
国家自然科学基金项目(52478563); 云南水利水电职业学院基金项目(2025YSZSYS002); 中国地震局建筑物破坏机理与防御重点实验室开放基金项目(FZ211102)