0 | 0 | 47 |
下载次数 | 被引频次 | 阅读次数 |
【目的】地下水的分布、埋深及储变量监测是实现水资源可持续利用的关键,但由于复杂的地表环境和地质条件,如何利用遥感技术更准确地量化地下水资源仍然是一个技术难题。【方法】从综合评价方法角度,详细分析了水文地质遥感信息分析法、地学要素遥感信息分析法、热红外遥感地表热异常评估法、遥感信息定量反演模型、重力卫星数据测量及地表形变测量在地下水分布、埋深及储变量研究中的应用与进展。【结果】(1)现有遥感技术在地下水分布、埋深及储变量监测方面的应用已成为传统测量方式的有效辅助手段,是一种更高效全面的地下水信息获取方式。(2)综合多遥感评估因子并结合地面勘探数据建立地下水评估模型,既充分利用了遥感技术的广覆盖性和高效性,又具有传统勘探方式的准确性和可靠性,是当前应对特殊地理环境下地下水资源评估的首选。(3)多源遥感数据同化是遥感技术在地下水资源评估中的应用趋势,未来在遥感卫星技术及数据联合处理等方面的技术突破将大大提高地下水资源的监测与管理能力,为水资源综合治理提供更全面、更可靠的信息支撑。【结论】复杂地理环境下地下水分布、埋深及储变量遥感评估模型需综合多源遥感数据与地面勘探数据,通过数据同化突破遥感卫星硬件的局限性,获取更精确的地下水评估结果。
Abstract:【Objective】 Monitoring the distribution, depth, and storage volume of groundwater is essential for achieving the sustainable utilization of water resources. However, due to the complex surface environment and geological conditions, how to use remote sensing technology to more accurately quantify groundwater resources remains a technical challenge. 【Methods】 This study provides a detailed analysis, from the perspective of comprehensive evaluation methods, of the applications and advancements of hydrogeological remote sensing analysis, geoscience-element remote sensing information analysis, thermal infrared remote sensing evaluation of surface thermal anomalies, quantitative inversion modeling of remote sensing information, GRACE satellite gravity data measurements, and surface deformation measurements in the study of groundwater distribution, depth, and storage volume. 【Results】 Firstly, the application of remote sensing technology in monitoring groundwater distribution, depth, and storage volum has become an effective auxiliary means to the traditional measurement method, providing a more efficient and comprehensive way to obtain groundwater information. Secondly, integrating multiple remote sensing evaluation factors and combining with ground exploration data to establish a groundwater evaluation model not only fully utilizes the wide coverage and efficiency of remote sensing technology, but also retains the accuracy and reliability of traditional exploration methods. It is currently the preferred choice for evaluating groundwater resources in special geographical environments. Thirdly, the assimilation of multi-source remote sensing data is a trend in the application of remote sensing technology in groundwater resource assessment. Future technological breakthroughs in remote sensing satellite technology and integrated data processing will greatly improve the monitoring and management capabilities of groundwater resources, providing more comprehensive and reliable information support for integrated water resource management. 【Conclusion】 Accurate remote sensing assessment models of groundwater distribution, depth, and storage volume in complex terrains require integrating multi-source remote sensing with ground exploration data, using data assimilation to overcome inherent satellite hardware limitations and achieve more precise groundwater assessment results.
[1] 陈礼宾.七十年代美、加等国的热红外遥感技术在水文地质调查中的应用实例[J].国外地质勘探技术,1981(7):8-11.[CHEN L B.Application examples of thermal infrared remote sensing in hydrogeological surveys,1970s,US,Canada,etc[J].Foreign Geoexploration Technology,1981(7):8-11.]
[2] 刘静,宋梦林,臧超,等.松辽平原地下水埋深变化及关键影响因子分析[J].华北水利水电大学学报(自然科学版),2021,42(2):58-65.[LIU J,SONG M L,ZANG C,et al.Research on variation of groundwater depth and key influencing factors in Songliao Plain[J].Journal of North China University of Water Resources and Electric Power(Natural Science Edition),2021,42(2):58-65.]
[3] KRISHNAMURTHY J,SRINIVAS G.Role of geological and geomorphological factors in ground water exploration:a study using IRS LISS data[J].International Journal of Remote Sensing,1995,16(14):2595-2618.
[4] 盖利亚,孙银行,李巨芬,等.遥感技术在基岩山区地下水勘查中的应用:以太行山区为例[J].测绘科学,2012,37(3):66-68.[GAI L Y,SUN Y H,LI J F,et al.Application of remote sensing in underground water exploration of bedrock area:case study of Taihang Mountains[J].Science of Surveying and Mapping,2012,37(3):66-68.]
[5] NDOU N N,PALAMULENI L G,RAMOELO A.Modelling depth to groundwater level using SEBAL-based dry season potential evapotranspiration in the upper Molopo River Catchment,South Africa[J].The Egyptian Journal of Remote Sensing and Space Sciences,2018,21(3):237-248.
[6] 阿布都瓦斯提·吾拉木,秦其明.地下水遥感监测研究进展[J].农业工程学报,2004,20(1):184-188.[ABDUWASIT G,QIN Q M.Overview on methods and theories of remote sensing monitoring and exploration of groundwater[J].Transactions of the CSAE,2004,20(1):184-188.]
[7] 许颢砾,王大庆,邓正栋,等.某岛屿GF-1-RS浅层地下水富集性评估[J].水文地质工程地质,2018,45(6):42-48.[XU H L,WANG D Q,DENG Z D,et al.Assessment of shallow groundwater potential in the island based on GF-1 and DEM data by remote sensing[J].Hydrogeology & Engineering Geology,2018,45(6):42-48.]
[8] 刘永新,姜琦刚,刘伟,等.利用GRSFAI预测内蒙古北部干旱地区浅层地下水分布[J].世界地质,2019,38(4):1142-1151.[LIU Y X,JIANG Q G,LIU W,et al.Prediction of shallow groundwater distribution in arid region of northern Inner Mongolia using GRSFAI[J].Global Geology,2019,38(4):1142-1151.]
[9] 陈南祥,杨杰,屈吉鸿.中牟县地下水生态水位研究[J].华北水利水电大学学报 (自然科学版),2016,37(1):84-88.[CHEN N X,YANG J,QU J H.Ecological groundwater level of Zhongmou County[J].Journal of North China University of Water Resources and Electric Power (Natural Science Edition),2016,37(1):84-88.]
[10] 钟华平,刘恒,王义,等.黑河流域下游额济纳绿洲与水资源的关系[J].水科学进展,2002,13(2):223-228.[ZHONG H P,LIU H,WANG Y,et al.Relationship between Ejina oasis and water resources in the lower Heihe River basin[J].Advances in Water Science,2002,13(2):223-228.]
[11] 管子隆,吕爱锋,贾绍凤,等.格尔木河中游地区植被覆盖与地下水埋深关系研究[J].南水北调与水利科技,2018,16(3):86-93.[GUAN Z L,LYU A F,JIA S F,et al.Study on the relationship between vegetation cover and groundwater depth in the middle reaches of Golmud River[J].South-to-North Water Transfers and Water Science & Technology,2018,16(3):86-93.]
[12] 曹乐,聂振龙,刘敏,等.民勤绿洲天然植被生长与地下水埋深变化关系[J].水文地质工程地质,2020,47(3):25-33.[CAO L,NIE Z L,LIU M,et al.Changes in natural vegetation growth and groundwater depth and their relationship in the Minqin oasis in the Shiyang River Basin[J].Hydrogeology & Engineering Geology,2020,47(3):25-33.]
[13] 王超,董少刚,贾志斌,等.草原露天煤矿区植被对地下水位埋深变化的响应[J].生态学报,2020,40(19):6925-6937.[WANG C,DONG S G,JIA Z B,et al.Response of vegetation to changes in groundwater level in open-pit coal mining areas of grassland[J].Acta Ecologica Sinica,2020,40(19):6925-6937.]
[14] KANG K,KIM D,KIM Y,et al.Quantitative estimation of submarine groundwater discharge using airborne thermal infrared data acquired at two different tidal heights[J].Hydrological Processes,2019,33(7):1089-1100.
[15] 台风.利用热红外成像技术测量海底地下水排放量[J].中国测绘,2020(9):77-79.[TAI F.Measurement of submarine groundwater discharge using thermal infrared imaging technology[J].China Surveying and Mapping,2020(9):77-79.]
[16] 郑璞,邓正栋,王大庆,等.基于TM数据的土壤湿度指数预测半干旱地区浅层地下水的研究:以朝阳地区为例[J].水文,2015,35(5):23-29.[ZHENG P,DENG Z D,WANG D Q,et al.Study on precipitation regionalization base on diversity sequence information entropy[J].Journal of Hydrology,2015,35(5):23-29.]
[17] 姜红,玉素甫江·如素力,热伊莱·卡得尔,等.一种利用土壤水分反演地下水位遥感方法[J].遥感信息,2018,33(5):82-88.[JIANG H,YUSUFUJIANG R,REYILAI K,et al.A remote sensing method for retrieving groundwater levels using soil moisture[J].Remote Sensing Information,2018,33(5):82-88.]
[18] 史晓亮,周政辉,王馨爽.基于遥感技术的干旱区地下水监测研究[J].人民黄河,2019,41(7):87-91.[SHI X L,ZHOU Z H,WANG X S.Study on groundwater monitoring based on remote sensing in arid region[J].Yellow River,2019,41(7):87-91.]
[19] YU D H,DENG Z D,LONG F,et al.Study on shallow groundwater information extraction technology based on multi-spectral data and spatial data[J].Science in China Series E:Technological Sciences,2009,52:1420-1428.
[20] HARTMANN A,LIU Y,OLARINOYE T,et al.Integrating field work and large-scale modeling to improve assessment of karst water resources[J].Hydrogeology Journal,2021,29(1):315-329.
[21] SOYLU M E,BRAS R L.Detecting shallow groundwater from spaceborne soil moisture observations[J].Water Resources Research,2021,57(2):e2020WR029102-e2020WR029102.
[22] SOYLU M E,BRAS R L.Global shallow groundwater patterns from soil moisture satellite retrievals[J].Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2022,15:89-101.
[23] WAHR J,MOLENAAR M,BRYAN F.Time variability of the Earth′s gravity field:hydrological and oceanic effects and their possible detection using GRACE[J].Journal of Geophysical Research,1998,103(B12):30205-30229.
[24] HAN S,SAUBER J,LUTHCKE S B,et al.Implications of postseismic gravity change following the great 2004 Sumatra-Andaman earthquake from the regional harmonic analysis of GRACE intersatellite tracking data[J].Journal of Geophysical Research,2008,113(B11):B11413.
[25] RODELL M,FAMIGLIETTI J S.The potential for satellite-based monitoring of groundwater storage changes using GRACE:the high plains aquifer,central US[J].Journal of Hydrology (Amsterdam),2002,263(1/2/3/4):245-256.
[26] 张璐,江善虎,任立良,等.基于GRACE数据监测黄河流域陆地水储量变化[J].人民黄河,2020,42(4):47-51,64.[ZHANG L,JIANG S H,REN L L,et al.Exploreand analysis variation of the terrestrial water storage in Yellow River Basin based on GRACE data[J].Yellow River,2020,42(4):47-51,64.]
[27] GUO Y,GAN F P,YAN B K,et al.Evaluation of groundwater storage depletion using GRACE/GRACE Follow-On data with land surface models and its driving factors in Haihe river Basin,China[J].Sustainability,2022,14(3):1108.
[28] SKASKEVYCH A,LEE J,JUNG H C,et al.Application of GRACE to the estimation of groundwater storage change in a data-poor region:a case study of Ngadda catchment in the Lake Chad Basin[J].Hydrological Processes,2020,34(4):941-955.
[29] 曹杰,肖云,龙笛,等.联合重力卫星和水井资料监测华北平原地下水储量变化[J].武汉大学学报(信息科学版),2024,49(5):805-818.[CAO J,XIAO Y,LONG D,et al.Combined gravity satellite and water well information to monitor groundwater storage changes in the North China Plain[J].Geomatics and Information Science of Wuhan University,2024,49(5):805-818.]
[30] FETTER C W.Applied hydrogeology[M].Long Grove:Waveland Press,2018.
[31] BAWDEN G W,THATCHER W,STEIN R S,et al.Tectonic contraction across Los Angeles after removal of groundwater pumping effects[J].Nature,2001,412(6849):812-815.
[32] CALDERHEAD A I,MARTEL A,ALASSET P J,et al.Land subsidence induced by groundwater pumping,monitored by D-InSAR and field data in the Toluca Valley,Mexico[J].Canadian Journal of Remote Sensing,2010,36(1):9-23.
[33] ZHOU C F,GONG H L,CHEN B B,et al.Land subsidence under different land use in the eastern Beijing plain,China 2005-2013 revealed by InSAR timeseries analysis[J].GIScience and Remote Sensing,2016,53(6):671-688.
[34] LIU Z,LIU P,MASSOUD E,et al.Monitoring groundwater change in California′s Central Valley using Sentinel-1 and GRACE observations[J].Geosciences,2019,9(10):436.
[35] KUMAR H,SYED T H,AMELUNG F,et al.Space-time evolution of land subsidence in the National Capital Region of India using ALOS-1 and Sentinel-1 SAR data:evidence for groundwater overexploitation[J].Journal of Hydrology,2022,605:127329.
[36] LIU Y,ZHANG Y,ZHAO F Q,et al.Multi-source SAR-based surface deformation monitoring and groundwater relationship analysis in the Yellow River Delta,China[J].Remote Sensing,2023,15(13):3290.
[37] AMOS C B,AUDET P,HAMMOND W C,et al.Uplift and seismicity driven by groundwater depletion in central California[J].Nature,2014,509(7501):483-486.
[38] ARGUS D F,LANDERER F W,WIESE D N,et al.Sustained water loss in California′s mountain ranges during severe drought from 2012 to 2015 inferred from GPS[J].Journal of Geophysical Research:Solid Earth,2017,122(12):10559-10585.
[39] 何思源,谷延超,范东明,等.利用GPS垂直位移反演云南省陆地水储量变化[J].测绘学报,2018,47(3):332-340.[HE S Y,GU Y C,FAN D M,et al.Seasonal variation of terrestrial water storage in Yunnan Province inferred from GPS vertical observations[J].Acta Geodaetica et Cartographica Sinica,2018,47(3):332-340.]
[40] WHITE A M,GARDNER W P,BORSA A A,et al.A review of GNSS/GPS in hydrogeodesy:hydrologic loading applications and their implications for water resource research[J].Water Resources Research,2022,58(7):e2022WR032078.
[41] AN K.Investigating the relationship between land subsidence and groundwater depletion in the north China plain using GRACE and ICESat[D].Los Angeles:University of California,2015.
[42] MICHEL D K,JACCO K H,ROB R V B,et al.Determination of amount of land subsidence based on InSAR and Lidar monitoring for a dike strengthening project[J].Proceedings of the International Association of Hydrological Sciences,2020,382:57-62.
[43] HE Y F,XU G C,KAUFMANN H,et al.Integration of InSAR and Lidar technologies for a detailed urban subsidence and hazard assessment in Shenzhen,China[J].Remote Sensing,2021,13(12):2366.
[44] SCOTT C,PHAN M,NANDIGAM V,et al.Measuring change at Earth′s surface:on-demand vertical and three-dimensional topographic differencing implemented in OpenTopography[J].Geosphere,2021:1318-1332.
[45] BERNARD T G,LAGUE D,STEER P.Beyond 2D landslide inventories and their rollover:synoptic 3D inventories and volume from repeat Lidar data[J].Earth Surface Dynamics,2021,9(4):1013-1044.
[46] HU L R,NAVARRO-HERNáNDEZ M I,LIU X J,et al.Analysis of regional large-gradient land subsidence in the Alto Guadalentín Basin (Spain) using open-access aerial Lidar datasets[J].Remote Sensing of Environment,2022,280:113218.
[47] 杨帆,王长青,许厚泽,等.利用运动学轨道提高GRACE时变重力场解算[J].地球物理学报,2017,60(1):37-49.[YANG F,WANG C Q,XU H Z,et al.Towards a more accurate temporal gravity model from GRACE observations through the kinematic orbits[J].Chinese Journal of Geophysics,2017,60(1):37-49.]
[48] ANTONI M.A review of different mascon approaches for regional gravity field modelling since 1968[J].History of Geo-and Space Sciences,2022,13(2):205-217.
[49] ELSAKA B,RAIMONDO J,BRIEDEN P,et al.Comparing seven candidate mission configurations for temporal gravity field retrieval through full-scale numerical simulation[J].Journal of Geodesy,2014,88(1):31-43.
[50] YI S,SNEEUW N.A novel spatial filter to reduce north-south striping noise in GRACE spherical harmonic coefficients[J].Journal of Geodesy,2022,96(4):23.
[51] FLOBERGHAGEN R,FEHRINGER M,LAMARRE D,et al.Mission design,operation and exploitation of the gravity field and steady-state ocean circulation explorer mission[J].Journal of Geodesy,2011,85(11):749-758.
[52] 徐新禹,姜卫平,张晓敏,等.一种新型重力测量卫星系统确定全球重力场的性能分析[J].地球物理学报,2018,61(6):2227-2236.[XU X Y,JIANG W P,ZHANG X M,et al.Ability of recovering the global gravity field of a new satellite gravimetry system[J].Chinese Journal of Geophysics,2018,61(6):2227-2236.]
[53] 徐彦田,窦世标,刘艳辉,等.我国GNSS基准站空间分布特征分析[J].测绘科学,2023,48(6):33-37,72.[XU Y T,DOU S B,LIU Y H,et al.Study on the spatial distribution characteristics of GNSS reference station in China[J].Science of Surveying and Mapping,2023,48(6):33-37,72.]
[54] 李建成,李贤炮,钟波.利用GNSS地表形变反演区域陆地水储量变化的进展[J].武汉大学学报(信息科学版),2023,48(11):1724-1735.[LI J C,LI X P,ZHONG B.Review of inverting GNSS surface deformations for regional terrestrial water storage changes[J].Geomatics and Information Science of Wuhan University,2023,48(11):1724-1735.]
基本信息:
DOI:10.19760/j.ncwu.zk.2025070
中图分类号:P237;P641.7
引用信息:
[1]孟俊贞,杨小权,李志萍.基于遥感技术的地下水埋深和储变量监测评估研究进展[J].华北水利水电大学学报(自然科学版),2025,46(05):23-33.DOI:10.19760/j.ncwu.zk.2025070.
基金信息:
国家自然科学基金项目(41972261)