513 | 1 | 173 |
下载次数 | 被引频次 | 阅读次数 |
跨流域调水深刻改变了白洋淀淀区下垫面的供水条件,揭示淀区下垫面供水量与实际蒸散发量(ETa)的关系对于淀区用水安全和水资源管理具有重要意义。采用基于Budyko理论的傅抱璞经验公式对白洋淀淀区的ETa进行计算,然后运用Archimedean Copula函数对淀区不同供水组合与ETa的联合分布进行研究。结果表明:跨流域调水前后白洋淀淀区多年平均ETa分别为547.24、583.96 mm,且ETa变化趋势与下垫面的供水变化趋势相同;不同Archimedean Copula函数均可较好地描述下垫面供水量与ETa的相依关系和联合概率分布特性;同时段“P+R+Q与ETa”与“P+R与ETa”的联合概率相比下降了0.06,条件概率下降了0.04,条件重现期增加了6.67年,在二者均值所构建的联合分布中,联合概率下降了0.10,条件概率下降了0.26。以上结果表明,实施跨流域调水工程以来,白洋淀淀区水资源短缺风险有所降低。
Abstract:Cross-basin water transfer has profoundly changed the water supply conditions of the underlying surface in Baiyangdian District, and studying the relationship between the water supply amount and actual evapotranspiration(ETa) in the Dian District is of great significance for water safety and scientific management in the Dian District. In this study, the empirical formula of Fu Baopu based on Budyko theory was used to calculate the ETa in Baiyangdian Lake, and then the Archimedean Copula function was used to study the joint distribution of different water supply combinations and ETa in the area. The results showed that the average annual actual evapotranspiration in Baiyangdian District before and after cross-basin water transfer was 547.24 mm and 583.96 mm, respectively, and the ETa trend was the same as that of the underlying water supply. Different Archimedean Copula functions can better describe the dependence relationship and joint probability distribution characteristics of the underlying water supply and ETa. Compared with “P+R+Q and ETa” and “P+R and ETa”, the joint probability decreases by 0.06, the conditional probability decreases by 0.04, and the conditional recurrence period increases by 6.67 years. In the joint distribution constructed by the mean of the two, the joint probability decreases by 0.10. The conditional probability decreased by 0.26; It shows that the risk of water shortage in Baiyangdian District has been reduced since the implementation of inter-basin water transfer project.
[1] 吴新玲.基于白洋淀的功能分析其补水时机及效益[J].水科学与工程技术,2012(101):37-39.
[2] 尹彦礼,王琮琪,杨晨,等.南水北调中线工程通水前后白洋淀湿地生态服务价值变化分析[J].华北水利水电大学学报(自然科学版),2021,42(5):38-45.
[3] 魏占杰,高景霄.白洋淀水文化资源的保护与开发利用研究[J].城市发展研究,2020,27(5):18-22.
[4] 崔志清.实施白洋淀生态补水确保雄安新区水安全[J].中国水利,2020,(15):62-63,39.
[5] 杨东广,吴大康.白洋淀水生态文明建设困境及其破解路径研究[J].河北工程大学学报(社会科学版),2019,(4):11-15.
[6] 李琳琳,王国清,秦攀,等.白洋淀水环境状况与治理保护对策[J].科技导报,2019,37(21):14-25.
[7] 周月英,高艺桔,石莹怡,等.基于Copula函数的粤港澳大湾区干旱遭遇风险分析[J].华北水利水电大学学报(自然科学版),2022,43(4):20-28,66.
[8] 马明卫,程玉佳,崔惠娟,等.黄河唐乃亥站径流干旱多变量联合特征分析[J].华北水利水电大学学报(自然科学版),2020,41(5):1-9.
[9] 卢泽华,王君勤.自然降水条件下关中平原农业水资源短缺风险分析[J].水土保持研究,2021,28(6):364-370.
[10] 付强,王珊珊,李天霄.考虑水资源短缺风险的不确定性水资源优化配置[J].东北农业大学学报,2018,49(10):52-61.
[11] 林小敏,张金萍,靳玉莹,等.灌区自然供水条件下的水资源短缺风险模型及应用[J].灌溉排水学报,2017,36(2):64-68.
[12] 赵春雷,钱拴,黄强,等.基于降水量的白洋淀最低水位预测研究[J].中国生态农业学报(中英文),2019,27(8):1238-1244.
[13] 张文,贾祎琳,崔长露,等.基于多源数据的白洋淀水域变化析[J].水利信息化,2017(5):39-45.
[14] 袁勇,严登华,王浩,等.白洋淀湿地入淀水量演变归因分析[J].水利水电技术,2013,44(12):1-4,23.
[15] NAZARIALAMDARLOO T,JAMALI H A,NAZARI B,et al.A system dynamics approach for water resources management with focusing on domestic water demand[J].Environmental Health Engineering and Management,2020,7(4):229-235.
[16] DE MICHELE C,SALVADORI G.A multivariate model of sea storms using copulas[J].Coastal Engineering,2007,54(10):734-751.
基本信息:
DOI:10.19760/j.ncwu.zk.2025004
中图分类号:TV213.4
引用信息:
[1]张金萍,苏少辉,左其亭.跨流域调水前后白洋淀淀区水资源短缺风险分析[J].华北水利水电大学学报(自然科学版),2025,46(01):32-40.DOI:10.19760/j.ncwu.zk.2025004.
基金信息:
国家重点研发计划项目(2021YFC3200205)