537 | 2 | 408 |
下载次数 | 被引频次 | 阅读次数 |
开展灌区水资源承载力多目标决策研究,探究灌区水资源、社会经济以及生态环境三者之间的互动关系,对可持续性灌区建设具有重要意义。以赵口引黄灌区二期工程为研究对象,以灌区经济效益最大、缺水率最小、承载人口总量最多、污染物排放量最小以及粮食产量最大为目标,综合考虑灌区供需水能力、灌溉面积、污染物排放等多维临界约束,构建了赵口引黄灌区二期工程水资源承载力多目标决策模型,运用第3代非支配排序遗传算法(NSGA-Ⅲ)进行求解,获得Pareto最优解集,并依据不同的目标偏好和熵权法从中选取多套决策方案。研究结果表明:文中经济效益最大、社会效益最大、生态效益最大、人口总量最大以及粮食产量最大5个目标相互制约,Pareto非劣解侧重于追求其中一方效益最优的同时,必然会引起其他目标值(至少一个)变劣。因此,文中得到的多种决策方案可为灌区未来水资源承载力的提升提供科学理论指导。
Abstract:It is of great significance for sustainable construction of irrigated areas to carry out multi-objective decision-making research on water resources carrying capacity and explore the interactive relationship among water resources, social economy and ecological environment in irrigated areas. This paper took the Phase II Project of Zhaokou Yellow River Irrigation District as the research object, the maximum economic benefit, the minimum water shortage, the largest carrying population, the minimum pollutant discharge and the maximum grain yield of the irrigated area were identified as objectives, comprehensively considering the multidimensional critical constraints(e.g. water supply and demand capacity, irrigation area and pollutant discharge), a multi-objective decision-making model of water resources carrying capacity of the Phase II Project of Zhaokou Yellow River Irrigation District was constructed. The model was solved by the third-generation non-dominated sorting genetic algorithm(NSGA-Ⅲ), and the Pareto optimal solution sets were obtained. Multiple decision schemes were selected based on the obtained results according to different objective preferences and entropy weight method. The results show that the five goals of maximum economic benefit, maximum social benefit, maximum ecological benefit, maximum population and maximum grain output in this paper are mutually restricted. The non-inferior Pareto solution focuses on the pursuit of the optimal benefit of one of the five goals, and will inevitably cause the other goals(at least one) to become inferior. Therefore, the decision schemes obtained in this paper can provide scientific theoretical guidance for the future improvements of water resources carrying capacity in irrigated areas.
[1] 金菊良,沈时兴,崔毅,等.半偏减法集对势在引黄灌区水资源承载力动态评价中的应用[J].水利学报,2021,52(5):507-520.
[2] 高占义.我国灌区建设及管理技术发展成就与展望[J].水利学报,2019,50(1):88-96.
[3] 逯林方,王辉辉,胡亚伟,等.赵口引黄灌区二期工程区域地表水水质评价[J].灌溉排水学报,2022,41(9):117-124.
[4] LI Y,YANG Y Z,YAN H M,et al.Research methods of water resources carrying capacity:progress and prospects[J].Journal of resources and ecology,2018,9(5):455-460.
[5] 陈文娟,姚润钖,石文豪,等.基于系统动力学模型的天津市水资源承载力模拟分析[J].水资源与水工程学报,2023,34(2):42-51.
[6] 金菊良,陈梦璐,郦建强,等.水资源承载力预警研究进展[J].水科学进展,2018,29(4):583-596.
[7] 张永勇,夏军,王中根.区域水资源承载力理论与方法探讨[J].地理科学进展,2007(2):126-132.
[8] 白涛,刘东,李江,等.基于节水优先和工程布局调整的塔里木河流域节水潜力[J].水科学进展,2022,33(4):614-626.
[9] 徐咏飞,邹欣庆.曹妃甸工业区水资源承载能力研究[J].中国人口·资源与环境,2009,19(6):60-64.
[10] 李放,罗晓容.三峡库区重庆段水资源承载力研究[J].人民长江,2010,41(21):35-38.
[11] 尹杰杰,崔远来,刘博,等.基于多目标优化的灌区水资源承载力研究[J].中国农村水利水电,2017(8):5-8.
[12] 刘冬梅,张京恩.浅论灌溉水库设计的典型年法和长系列法[J].泥沙研究,2000(2):72-75.
[13] 张运凤,郭威,徐建新,等.基于最严格水资源管理制度的大功引黄灌区的水资源优化配置[J].华北水利水电大学学报(自然科学版),2015,36(3):28-32.
[14] 袁虎.引黄工程供水水价问题探讨[J].科技情报开发与经济,2010(11):208-210.
[15] 张权,李凌琪,江恩慧,等.基于NSGA-Ⅱ的鄂尔多斯市多目标水量分配结构优化[J].华北水利水电大学学报(自然科学版),2023,44(5):22-30.
[16] 蒋海云,许模,魏云杰.新疆某竖井排灌工程经济效益分析[J].水土保持研究,2006,13(2)32-33,114.
[17] 向龙,龚泓博.基于IFMOP的玉环市区域水资源配置[J].水资源保护,2021,37(6):49-53,73.
[18] 闫志宏,王树谦,刘彬,等.改进飞蛾火焰算法在多目标水资源优化配置中的应用[J].中国农村水利水电,2019(7):53-59,65.
[19] 龙腾锐,姜文超,何强.水资源承载力内涵的新认识[J].水利学报,2004,35(1):38-45.
[20] 李辉,卞锦宇,周婷,等.基于联系数的区域水资源承载力诊断指标组合预测研究[J].华北水利水电大学学报(自然科学版),2018,39(3):18-23.
[21] 陈南祥,刘为,高志鹏,等.基于多目标遗传-蚁群算法的中牟县水资源优化配置[J].华北水利水电大学学报(自然科学版),2015,36(6):1-5.
[22] 马兴华,安娟,王少波,等.北部湾经济区水资源承载能力研究[J].人民黄河,2011,33(5):31-32.
[23] 冀宁远,杨侃,陈静,等.基于IABC-PSO算法的区域水资源优化配置模型研究[J].人民长江,2021,52(6):49-57,87.
[24] 王宏伟,张鑫,邱俊楠,等.基于多目标遗传算法的西宁市水资源优化配置研究[J].水土保持通报,2012,32(2):150-153.
[25] DEB K,JAIN H.An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach,part I:solving problems with box constraints[J].IEEE transactions on evolutionary computation,2014,18(4):577-601.
[26] TIAN Y,CHENG R,ZHANG X Y,et al.PlatEMO:a MATLAB platform for evolutionary multi-objective optimization educational forum[J].IEEE computational intelligence magazine,2017,12(4):73-87.
[27] 王慧,高泽海,孙超,等.基于NSGA-Ⅱ的灌区水资源优化配置模型及应用[J].灌溉排水学报,2021,40(9):118-124.
[28] LIU H J,YAN F Y,TIAN H.Towards low-carbon cities:patch-based multi-objective optimization of land use allocation using an improved non-dominated sorting genetic algorithm-Ⅱ[J].Ecological indicators,2022,134:108455.
[29] 钟华平,刘恒,耿雷华,等.河道内生态需水估算方法及其评述[J].水科学进展,2006,17(3):430-434.
[30] 李紫妍,刘登峰,黄强,等.基于多种水文学方法的汉江子午河生态流量研究[J].华北水利水电大学学报(自然科学版),2017,38(1):8-12.
基本信息:
DOI:10.19760/j.ncwu.zk.2024041
中图分类号:TV213.4
引用信息:
[1]冯涛,杨睿峰,左其亭等.引黄灌区水资源承载力多目标决策模型[J].华北水利水电大学学报(自然科学版),2024,45(04):47-55.DOI:10.19760/j.ncwu.zk.2024041.
基金信息:
河南省水利厅水利科技攻关项目(GG202125,GG202022); 国家重点研发计划项目(2021YFC3200201); 河南省重大公益性科技专项(201300311500); 河南省高层次人才特殊支持计划项目(ZYQR201912184)