883 | 6 | 229 |
下载次数 | 被引频次 | 阅读次数 |
全球变暖加快了水文循环速度,导致极端降水事件频发,增强了城市排水负荷和洪涝风险,并影响了区域气候的时空特征。在河南省均匀选取26个雨量站对1960—2020年61年间的降水资料进行研究,采用趋势分析、Kriging插值、M-K突变分析、Morlet小波变换和Spearman相关系数等方法对河南省9个极端降水指数的时空演变特征进行分析。结果显示:河南省年降水量呈上升趋势,极端降水事件呈下降趋势,河南省整体气候逐渐变得湿润。河南省极端降水指数具有显著空间差异,东南部极端降水风险显著大于西北部。除降水强度、最大连续降水日数和1 d最大降水量外,其余指数与年降水量、汛期和6—9月的各月降水量具有良好的相关性,这对于评估年降水量及其年内分布特征、极端降水事件频率有较好的参考作用。结果表明:降水从短历时高强度向长历时低强度演变,要应对此类长历时极端降水的风险,防涝思路应从提高短时间大量排水能力转变到提高长时间低强度吸收降水能力。
Abstract:Global warming has accelerated the hydrological cycle leading to frequent extreme precipitation events, increased urban drainage loads and flood risks, and affected the temporal and spatial characteristics of regional climate. In this paper, the spatial and temporal evolution characteristics of nine extreme precipitation indices in Henan Province were analyzed by the methods of trend analysis, Kriging interpolation, M-K mutation analysis, Morlet wavelet transform and Spearman correlation coefficient based on the administrative division of Henan Province, and 26 rainfall stations were evenly selected in the region for the 61 years period from 1960 to 2020. The results show that the annual precipitation in Henan Province is on an increasing trend, the extreme precipitation events are on a decreasing trend, and the overall climate of Henan Province is gradually becoming wetter. Extreme precipitation indices in Henan Province have significant spatial differences, and the risk of extreme precipitation is significantly greater in the southeast than in the northwest. Except for precipitation intensity, maximum number of consecutive precipitation days and 1-day maximum precipitation, the indices have good correlation with annual precipitation, flood season and monthly precipitation from June to September, which is a good guideline for assessing annual precipitation and its intra-annual distribution characteristics, and frequency of extreme precipitation events. The results indicate that precipitation evolves from high intensity in short duration to low intensity in long duration, and the risk of such extreme precipitation in long duration should be addressed by realizing a shift in the thinking of flood control from improving the capacity to drain large amounts of water in short periods to absorbing precipitation in low intensity in long periods.
[1] GREVE P,GUDMUNDSSON L,SENEVIRATNE S I.Regional scaling of annual mean precipitation and water availability with global temperature change[J].Earth system dynamics,2018,9(1):227-240.
[2] 沈贝蓓,宋帅峰,张丽娟,等.1981—2019年全球气温变化特征[J].地理学报,2021,76(11):2660-2672.
[3] 张存杰,肖潺,李帅,等.极端气候事件综合危险性等级指标构建及近60年来长江流域极端气候综合分析[J].地球物理学报,2023,66(3):920-938.
[4] 夏冰,马鹏宇,徐聪,等.近20年黄河流域植被净初级生产力时空分布及其对极端天气变化的时空响应[J].水土保持研究,2023,30(2):256-266,284.
[5] 刘慧媛,邹磊,邢万里.1961—2018年海河流域极端降水时空演变特征[J].水电能源科学,2021,39(12):1-6.
[6] 翟盘茂,潘晓华.中国北方近50年温度和降水极端事件变化[J].地理学报,2003,58(增刊1):1-10.
[7] 杨金虎,江志红,王鹏祥,等.中国年极端降水事件的时空分布特征[J].气候与环境研究,2008,13(1):75-83.
[8] 王志福,钱永甫.中国极端降水事件的频数和强度特征[J].水科学进展,2009,20(1):1-9.
[9] 宋晓猛,张建云,占车生,等.气候变化和人类活动对水文循环影响研究进展[J].水利学报,2013,44(7):779-790.
[10] 黄国如,张瀚.气候变化对广州市城市雨潮遭遇风险的影响评估[J].华北水利水电大学学报(自然科学版),2016,37(5):7-15.
[11] 白磊,李兰海,师春香,等.中国天山山区降水特征及其研究进展[J].华北水利水电大学学报(自然科学版),2017,38(5):38-48.
[12] 赵芹蕊,徐立荣,时延锋,等.1970—2019年济南市极端降水事件时空变化特征[J].水土保持研究,2022,29(4):140-149.
[13] 吕锦心,刘昌明,梁康,等.基于水资源分区的黄河流域极端降水时空变化特征[J].资源科学,2022,44(2):261-273.
[14] 王帅,赵荣钦,苏辉,等.河南省典型区农业水土资源开发的碳排放效应研究[J].华北水利水电大学学报(自然科学版),2019,40(1):71-78.
[15] 刘学华,季致建,吴洪宝,等.中国近40年极端气温和降水的分布特征及年代际差异[J].热带气象学报,2006,22(6):618-624.
[16] WU S Q,HU Z W,WANG Z H,et al.Spatiotemporal variations in extreme precipitation on the middle and lower reaches of the Yangtze River Basin (1970-2018)[J].Quaternary international,2021,592:80-96.
[17] SAFAVI M,SIUKI A K,HASHEMI S R.New optimization methods for designing rain stations network using new neural network,election,and whale optimization algorithms by combining the Kriging method[J].Environmental monitoring and assessment,2020,193:4.
[18] 王金鑫,秦子龙,曹泽宁,等.基于八叉树的修正克里金空间插值算法[J].郑州大学学报(工学版),2021,42(6):21-27.
[19] WANG Q,XIAO H,WU W Z,et al.Reconstructing high-precision coral reef geomorphology from active remote sensing datasets:a robust spatial variability modified ordinary Kriging method[J].Remote sensing,2022,14(2):253.
[20] 胡琦,马雪晴,胡莉婷,等.Matlab在气象专业教学中的应用:气象要素的M-K检验突变分析[J].实验室研究与探索,2019,38(12):48-51,107.
[21] SONG F,YANG X H,WU F F.Catastrophe progression method based on M-K test and correlation analysis for assessing water resources carrying capacity in Hubei Province[J].Journal of water and climate change,2020,11(2):556-567.
[22] 张耀鑫,姚传辉,王刚.基于M-K法与SPI指数的泰安降水量分析[J].海河水利,2022(4):97-100.
[23] KUANG C P,SU P,GU J,et al.Multi-time scale analysis of runoff at the Yangtze Estuary based on the Morlet Wavelet Transform method[J].Journal of mountain science,2014,11(6):1499-1506.
[24] 张愿章,段永康,郭春梅,等.河南省1951—2012年降水量的Morlet小波分析[J].人民黄河,2015,37(10):25-28.
[25] 孙晋秋,陆晨越,宁忠瑞,等.密苏里河流域水文特性及其对气候要素变化的响应[J].华北水利水电大学学报(自然科学版),2021,42(3):20-26.
[26] HAN Y H,LIU B,XU D,et al.Temporal and spatial variation characteristics of precipitation in the Haihe River Basin under the influence of climate change[J].Water,2021,13:1664.
[27] 夏正兵.黄河流域极端气候下降雨侵蚀力时空特征研究[J].水电能源科学,2021,39(7):16-19.
[28] 刘聪.全球气候变化背景下应用温度三区间理论对郑州地区夏玉米高温热害规律研究[J].现代农业研究,2018,33(9):20-22,28.
基本信息:
DOI:10.19760/j.ncwu.zk.2024038
中图分类号:P426.6
引用信息:
[1]李志刚,娄嘉慧,史冲.1960—2020年河南省极端降水时空演变特征[J].华北水利水电大学学报(自然科学版),2024,45(04):16-26.DOI:10.19760/j.ncwu.zk.2024038.
基金信息:
国家社科基金重大专项项目(18VZL001); 河南省软科学研究计划项目(212400410465); 河南省高校人文社会科学研究一般项目(2024-ZDJH-029); 河南省社科联调研课题(SKL-2023-398)