nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 02, v.46 13-22
面向内陆峡谷型水库的GACOS时序InSAR大气二次改正方法研究
基金项目(Foundation): 国家重点研发计划项目(2021YFB3900603)
邮箱(Email): wen_zhang@whu.edu.cn;
DOI: 10.19760/j.ncwu.zk.2025018
摘要:

大气延迟是影响时序InSAR精度的主要误差源之一,常见的InSAR大气改正方法主要包括基于干涉图内部特性的自改正法和外部数据辅助改正法。为了进一步削弱大气延迟带来的影响,结合研究区域的地形特征,提出了一种面向内陆峡谷型水库的时序InSAR大气二次改正方法。该方法将回归模型和GACOS数据集结合实现了大气二次改正,发挥了二者在大气改正中的优势。以河口村水库为例,将大气二次改正结果与常规时序InSAR结果进行了对比,并采用地表形变实测数据验证。结果表明,相比常规方法,GACOS改正方法的精度提升5.576%,线性改正、指数改正及指数+GACOS改正方法的精度依次提升,其中线性+GACOS改正方法的精度提升22.538%,说明提出的大气二次改正方法能进一步提高时序InSAR形变结果的精度,为InSAR技术在内陆峡谷型水库地区的地表形变监测提供参考。

Abstract:

Atmospheric delay remains a critical challenge in improving the accuracy of time-series interferometric synthetic aperture radar(TS-InSAR). Existing correction approaches primarily fall into two categories: self-correction based on interferogram characteristics and external data-assisted methods. To address the limitations of conventional methods in complex terrains, this study proposes a secondary atmospheric correction framework integrating regression models and the Generic Atmospheric Correction Online Service(GACOS) dataset, specifically tailored for inland canyon-type reservoirs. The proposed method capitalizes on the synergistic advantages of statistical regression and high-resolution atmospheric modeling. A case study at Hekoucun Reservoir demonstrates significant improvements: Compared to conventional TS-InSAR, the GACOS-only correction enhances accuracy by 5.576%, while the combined linear regression and GACOS approach achieves a 22.538% reduction in residual errors. Validation using in-situ deformation measurements confirms the method's effectiveness in mitigating stratified atmospheric artifacts induced by canyon topography. These findings provide a robust technical reference for high-precision deformation monitoring of reservoir slopes in geomorphologically constrained regions using advanced InSAR solutions.

参考文献

[1] 朱建军,李志伟,胡俊.InSAR变形监测方法与研究进展[J].测绘学报,2017,46(10):1717-1733.

[2] FOSTER J,KEALY J,CHERUBINI T,et al.The utility of atmospheric analyses for the mitigation of artifacts in InSAR[J].Journal of Geophysical Research:Solid Earth,2013,118(2):748-758.

[3] 蒋金雄.面向徐州老采空区长时序形变监测的DS-InSAR大气校正方法研究[D].徐州:中国矿业大学,2021.

[4] 边长春,韩守富.InSAR大气延迟校正方法综述[J].科学技术创新,2020(14):4-6.

[5] CAVALIé O,DOIN M,LASSERRE C,et al.Ground motion measurement in the Lake Mead area,Nevada,by differential synthetic aperture radar interferometry time series analysis:probing the lithosphere rheological structure[J].Journal of Geophysical Research:Solid Earth,2007,112(b3):B03403-1-B03403-18-0.

[6] DOIN M P,LASSERRE C,PELTZER G,et al.Corrections of stratified tropospheric delays in SAR interferometry:validation with global atmospheric models[J].Journal of Applied Geophysics,2009,69(1):35-50.

[7] LI Z W,CAO Y M,WEI J C,et al.Time-series InSAR ground deformation monitoring:atmospheric delay modeling and estimating[J].Earth-Science Reviews,2019,192:258-284.

[8] MURRAY K D,BEKAERT D P S,LOHMAN R B.Tropospheric corrections for InSAR:statistical assessments and applications to the Central United States and Mexico[J].Remote Sensing of Environment,2019,232:111326.

[9] YU C,LI Z H,PENNA N T,et al.Generic atmospheric correction model for interferometric synthetic aperture radar observations[J].Journal of Geophysical Research:Solid Earth,2018,123(10):9202-9222.

[10] YU C,LI Z H,PENNA N T.Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model[J].Remote Sensing of Environment,2018,204:109-121.

[11] YU C,PENNA N T,LI Z H.Generation of real-time mode high-resolution water vapor fields from GPS observations[J].Journal of Geophysical Research:Atmospheres,2017,122(3):2008-2025.

[12] 何希山,周平,陈刚.一种联合GACOS与线性大气校正的StaMPS PSI时序分析方法[J].测绘通报,2022(10):105-109,128.

[13] WANG Y Q,CHANG L,FENG W P,et al.Topography-correlated atmospheric signal mitigation for InSAR applications in the Tibetan plateau based on global atmospheric models[J].International Journal of Remote Sensing,2021,42(11):4361-4379.

[14] 张双成,宋明鑫,罗勇,等.北京地区时序InSAR对流层延迟校正方法研究[J].测绘科学,2021,46(10):108-117.

[15] 张成龙,李振洪,余琛,等.利用GACOS辅助下InSAR Stacking对金沙江流域进行滑坡监测[J].武汉大学学报(信息科学版),2021,46(11):1649-1657.

[16] 高梦瑶,许才军,刘洋.青藏高原西北缘时序InSAR对流层延迟改正方法评估[J].武汉大学学报(信息科学版),2021,46(10):1548-1559.

[17] 邢建营,关志诚,吕小龙.面板堆石坝深覆盖层处理技术研究及在河口村水库工程中的应用[J].岩土工程学报,2020,42(7):1368-1376.

[18] 刘庆军,郭其峰,王耀军,等.河口村水库工程地质条件综述及评价[J].人民黄河,2011,33(12):136-138.

[19] 石固林,徐浪,张璇钰,等.西山村滑坡时序形变的SBAS-InSAR监测[J].测绘科学,2021,46(2):93-98,105.

[20] BERARDINO P,FORNARO G,LANARI R,et al.A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2375-2383.

[21] 易邦进,黄成,傅涛,等.基于SBAS-InSAR技术的中缅边境山区地质灾害隐患探测[J].自然资源遥感,2023,35(4):186-191.

[22] 杨正荣,喜文飞,史正涛,等.基于SBAS-InSAR技术的白鹤滩水电站库岸潜在滑坡变形分析[J].中国地质灾害与防治学报,2022,33(5):83-92.

[23] 杨成生,张勤,曲菲霏,等.基于相位回归性分析的SAR差分干涉图大气延迟改正研究[J].上海国土资源,2012,33(3):11-15.

[24] 杨文韬,刘国林,牛冲,等.GACOS的SBAS-InSAR小尺度大气延迟改正及沉降监测[J].测绘科学,2023,48(6):73-81.

[25] 焦广棋,孙玉,杨琰.基于全球大气模型的日本关东平原InSAR对流层延迟改正研究[J].山东科技大学学报(自然科学版),2022,41(4):19-29.

基本信息:

DOI:10.19760/j.ncwu.zk.2025018

中图分类号:P237

引用信息:

[1]刘浩锋,孟令奎,罗志等.面向内陆峡谷型水库的GACOS时序InSAR大气二次改正方法研究[J].华北水利水电大学学报(自然科学版),2025,46(02):13-22.DOI:10.19760/j.ncwu.zk.2025018.

基金信息:

国家重点研发计划项目(2021YFB3900603)

检 索 高级检索