nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2025 01 v.46 63-77
南北典型流域旱涝演变特征及其对比研究
基金项目(Foundation): 国家自然科学基金项目(52009053,52209013,32101363); 绵阳师范学院科研启动项目(QD2020A06);绵阳师范学院研究生创新实践基金项目(CX202340)
邮箱(Email): liyunyun19900627@163.com;
DOI: 10.19760/j.ncwu.zk.2025007
中文作者单位:

绵阳师范学院资源环境工程学院;河北工程大学水利水电学院;

摘要(Abstract):

研究不同气候条件下流域旱涝特征的异同,揭示气候条件对流域旱涝情况的影响,可为不同气候条件下旱涝灾害的评估和预测提供依据。基于标准化降水指数,通过Mann-Kendall检验、滑动T检验、小波分析等方法对渭河流域及嘉陵江流域的旱涝演变特征进行了分析。结果表明:(1)两流域的旱涝程度以轻、中度为主,但嘉陵江流域更容易发生旱涝,渭河流域的旱涝历时更长。(2)两流域旱涝变化过程相似,但渭河流域的旱涝突变点在累积时间尺度较短时出现得更晚,反之出现得更早,且出现显著性变化趋势的持续时间更长。(3)当累积时间尺度较短时,渭河流域的标准化降水指数受大周期震荡影响较大,嘉陵江流域的标准化降水指数受小周期震荡影响较大;渭河流域的标准化降水指数在长时间和短时间尺度下均呈现出周期性,嘉陵江流域的标准化降水指数只在长时间尺度下呈现出较强的周期性。(4)渭河流域北部部分地区应在春季、嘉陵江流域南部应在夏季预防洪涝灾害,渭河流域的西部和北部、嘉陵江流域的南部应在秋、冬两季重点预防旱灾的发生。

关键词(KeyWords): 旱涝演变;SPI;Mann-Kendall检验;滑动T检验;小波分析;渭河流域;嘉陵江流域
参考文献

[1] SULIMAN A H A,AWCHI T A,ALMOLA M,et al.Evaluation of remotely sensed precipitation sources for drought assessment in Semiarid Iraq[J].Atmospheric Research,2020,242:105007.

[2] CHENG Y S,SANG Y F,WANG Z G,et al.Effects of rainfall and underlying surface on flood recession:the upper Huaihe River basin case[J].International Journal of Disaster Risk Science,2021,12(1):111-120.

[3] IPCC.Climate change 2014:impact,adaptation,and vnlnerability[M].Cambridge:Cambridge University Press,2014.

[4] 唐怡,卯昌书,苏建广.基于SPI指数的云南省干旱时空特征分析[J].水利水电快报,2023,44(2):17-23.

[5] 赵水霞,周泉成,王文君,等.基于SPI指数的内蒙古地区干湿气候特征[J].中国水利水电科学研究院学报(中英文),2022,20(1):10-19.

[6] 黄星怡,张佳乐,杨肖丽,等.黄河流域水文干旱时空特征研究[J].华北水利水电大学学报(自然科学版),2023,44(3):25-34.

[7] 李宝玉,朱晓萌,冯凯,等.贵州省气象干旱特征时空演变规律及联合发生概率分析[J].华北水利水电大学学报(自然科学版),2021,42(6):42-48,80.

[8] FILHO J D P,FILHO F D A S,EDUARDO S P R M,et al.Copula-based multivariate frequency analysis of the 2012-2018 drought in northeast Brazil[J].Water,2020,12:834.

[9] CALOIERO T,VELTRI S,CALOIERO P,et al.Drought analysis in Europe and in the Mediterranean basin using the standardized precipitation index[J].Water,2018,10:1043.

[10] LIU B,LIU Y B,WANG W P,et al.Meteorological drought events and their evolution from 1960 to 2015 using the daily SWAP index in Chongqing,China[J].Water,2021,13:1887.

[11] LIU C,YANG C,YANG Q,et al.Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province,China[J].Scientific Reports,2021,11:1280.

[12] SORI R,TEJEDA R M,STOJANOVIC M,et al.Spatiotemporal assessment of meteorological drought in Puerto Rico between 1950 and 2019[J].Environmental Sciences Proceedings,2021,8:40.

[13] FELLAG M,ACHITE M,WALEGA A.Spatialtemporal characterization of meteorological drought using the standardized precipitation index:case study in Algeria[J].Acta Scientiarum Polonorum Formatio Circumiectus,2021,20(1):19-31.

[14] CHEVAL S,BUSUIOC A,DUMITRESCU A,et al.Spatio-temporal variability of meteorological drought in Romania using the standardized precipitation index(SPI)[J].Climate Research,2014,60(3):235-248.

[15] 国家防汛抗旱总指挥部.中国水旱灾害公报2017[M].北京:中国地图出版社,2018.

[16] 王国庆,王云璋.渭河流域产流产沙模型及径流泥沙变化原因分析[J].水土保持学报,2000(4):22-25.

[17] 杜希溪.渭河流域气候舒适度变化特征及其对植被覆盖响应研究[D].杨凌:西北农林科技大学,2013.

[18] 杨睿,耿广坡,周洪奎,等.基于SPEI_PM指数的渭河流域气象干旱时空演变特征[J].中国农业气象,2021,42(11):962-974.

[19] 张婷,薛东剑,段金亮,等.2000~2019嘉陵江流域植被覆盖时空变化特征及气候响应分析[J].长江流域资源与环境,2021,30(5):1110-1120.

[20] 袁文平,周广胜.标准化降水指标与Z指数在我国应用的对比分析[J].植物生态学报,2004,28(4):523-529.

[21] PATEL N R,CHOPRA P,DADHWAL V K.Analyzing spatial patterns of meteorological drought using standardized precipitation index[J].Meteorological Applications,2007,14:329-336.

[22] 章诞武,丛振涛,倪广恒.基于中国气象资料的趋势检验方法对比分析[J].水科学进展,2013,24(4):490-496.

[23] 朱继前,韩美,徐泽华,等.淮河流域不同量级降雨时空分布特征及其影响因素[J].水土保持研究,2019,26(4):87-95.

[24] 秦年秀,姜彤,许崇育.长江流域径流趋势变化及突变分析[J].长江流域资源与环境,2005,14(5):589-594.

[25] 余予,孟晓艳,张欣.1980—2011年北京城区能见度变化趋势及突变分析[J].环境科学研究,2013,26(2):129-136.

[26] 吕琳莉,李朝霞.雅鲁藏布江中下游径流变异性识别[J].水力发电,2013,39(5):13-15.

[27] 魏凤英.现代气候统计诊断与预测技术[M].北京:气象出版社,2007.

[28] WANG Q,FU C B.The detection of climate abrupt change with Mann-kendall rank statistics[J].Acta Meteorological Sinica,1992,6(2):254-260.

[29] 中国气象局.气象干旱等级:GB/T 20481—2017[S].北京:中国标准出版社,2018:3.

[30] YEVJEVICH V.An objective approach to definitions and investigations of continental hydrologic droughts[J].Journal of Hydrology,1969,7(3):353-356.

[31] MOYé L A,KAPADIA A S.Predictions of drought length extreme order statistics using run theory[J].Journal of Hydrology,1995,169:95-110.

[32] SHIAU J T.Fitting drought duration and severity with two-dimensional copulas[J].Water Resources Management,2006,20(5):795-815.

[33] 桑燕芳,王中根,刘昌明.小波分析方法在水文学研究中的应用现状及展望[J].地理科学进展,2013,32(9):1413-1422.

[34] 朱炜歆,牛俊杰,刘庚,等.植被类型对生长季黄土区土壤含水量的影响[J].干旱区资源与环境,2017,30(1):152-156.

[35] 韦红波,李锐,杨勤科.我国植被水土保持功能研究进展[J].植物生态学报,2002,26(4):489-496.

基本信息:

DOI:10.19760/j.ncwu.zk.2025007

中图分类号:P333

引用信息:

[1]黄祎,黎云云,李艳春等.南北典型流域旱涝演变特征及其对比研究[J].华北水利水电大学学报(自然科学版),2025,46(01):63-77.DOI:10.19760/j.ncwu.zk.2025007.

基金信息:

国家自然科学基金项目(52009053,52209013,32101363); 绵阳师范学院科研启动项目(QD2020A06);绵阳师范学院研究生创新实践基金项目(CX202340)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文