nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 01, v.46 10-19
基于卧式抽蓄的多能互补系统容量配置优化研究
基金项目(Foundation): 国家重点研发计划项目(2023YFC3209404); 桂东电网风光水(火)储互补关键技术研究(GDGHFZ-WT-2023036); 教育部产学合作协同育人项目(220506429133218); 河南省高等学校重点科研项目(23B480001)
邮箱(Email): wangchao@iwhr.com;
DOI: 10.19760/j.ncwu.zk.2025002
摘要:

为提升传统水电的调节能力,扩大新能源的接入规模,可对常规水电站进行改造并增建泵站,以实现蓄能与发电的双重功能。构建基于卧式抽蓄的水电融合改造及风光水储多能互补系统,有助于实现对电网的调峰填谷,提高电网对新能源的消纳能力,保证风光等清洁能源进一步提质增效。通过对风电、光伏、水电和卧式抽蓄等发电子系统建立数学模型,设立目标函数与约束条件,利用优化算法对模型进行求解,得到风光互补出力与径流水电、垃圾发电和负荷特性规律,最后引入综合电费率计算互补基地的经济效益。分析结果显示,对第二级水电改造为卧式抽蓄后,丰水年的最优容量配置结果为风电645 MW、光伏1 081 MW,互补基地的功率偏差减小至0.532 0 MW/h,电力供应总成本降低至4.362 1亿元,电网2相连时电费率降低至0.028 4元/(kW·h),经济效益大幅提高。基于卧式抽蓄建立的多能互补容量配置优化模型,可进一步提高对能源的利用效率,充分发挥风光水储等资源的互补优势,提高系统的经济性和稳定性。

Abstract:

To enhance the regulation capacity of traditional hydropower and expand the scale of new energy access, conventional hydropower stations can be upgraded with additional pumping stations to achieve dual functions of energy storage and power generation. This study constructs multi-energy complementary system integrating horizontal pumped storage with hydropower transformation, wind, solar, and storage systems. The system is designed to assist grid peak shaving and valley filling, increase the grid′s capacity to accommodate new energy, and further improve the quality and efficiency of clean energy such as wind and solar power. Mathematical models for wind power, photovoltaic, hydropower, and horizontal pumped storage generation subsystems were developed, with objective functions and constraints established. An optimization algorithm was applied to solve the configuration model, yielding the complementary output characteristics of wind and solar power, runoff hydropower, waste-to-energy generation, and load profiles. Finally, a comprehensive tariff rate was introduced to evaluate the economic benefits of the complementary base. The analysis results indicate that after transforming the second-stage hydropower station into horizontal pumped storage, the optimal capacity allocation during an abundant water year is 645 MW of wind power and 1 081 MW of photovoltaic. The power deviation of the complementary base is reduced to 0.532 0 MW/h, the total power supply cost decreases to 436.21 million CNY, and the tariff rate for a 2-hour grid connection drops to 0.028 4 CNY/(kW·h), significantly improving economic benefits. The capacity allocation optimization model based on horizontal pumped storage enhances energy utilization efficiency, maximizes the complementary advantages of wind, solar, hydropower, and storage resources, and improves the system's economic performance and stability.

参考文献

[1] SMRITI M.How China could be carbon neutral by mid-century[J].Nature,2020,586(7830):482-483.

[2] 李莉,雷涯邻,吴三忙,等.我国煤炭消费产生的温室气体和大气污染排放研究[J].华北水利水电大学学报(自然科学版),2021,42(6):81-85.

[3] AI C,ZHANG L,GAO W,et al.A review of energy storage technologies in hydraulic wind turbines[J].Energy Conversion and Management,2022,264:115584.

[4] 国家能源局.关于推进“互联网+”智慧能源发展的指导意见[EB/OL].(2016-02-29)[2024-05-20].https://www.gov.cn/gongbao/content/2016/content_5082989.htm.

[5] 罗彬,陈永灿,苗树敏,等.融合改造的混合式抽水蓄能与风电联合运行短期调度模型[J].水利学报,2023,54(8):955-966.

[6] 夏金磊,唐翊杰,王玲玲,等.考虑灵活调节能力的梯级水风光蓄互补系统日前优化运行策略[J/OL].上海交通大学学报:1-25[2024-05-20].https://doi.org/10.16183/j.cnki.jsjtu.2023.419.

[7] 刘欣雨,罗彬,陈永灿,等.融合改造的梯级混合式抽蓄短期调峰优化模型[J/OL].电网技术:1-13[2024-05-20].https://doi.org/10.13335/j.1000-3673.pst.2023.2047.

[8] 梅祖彦,赵士和.抽水蓄能电站百问[M].北京:中国电力出版社,2002.

[9] 王浩,王超,蒋云钟,等.基于卧式抽水蓄能的风光水储多能互补系统:202110975508.3[P].2022-01-04.

[10] 冯慧,陈梅.对沧源县新牙河零级电站改建为抽水蓄能电站研究[J].水利建设与管理,2010,30(11):73-78,31.

[11] 曹文凯,朱信钊,陈记豪,等.碳中和目标时代绿色氢能发展技术路线研究[J].华北水利水电大学学报(自然科学版),2024,45(3):85-93.

[12] REN Y,SUN K T,ZHANG K,et al.Optimization of the capacity configuration of an abandoned mine pumped storage/wind/photovoltaic integrated system[J].Applied Energy,2024,374:124089.

[13] GUO L,LIU S D,XI L T,et al.Research on the short-term economic dispatch method of power system involving a hydropower-photovoltaic-pumped storage plant[J].Electronics,2024,13(7):1282.

[14] ZHOU H,LU L,SHEN L,et al.Two-stage robust optimal capacity configuration of a wind,photovoltaic,hydropower,and pumped storage hybrid energy system[J].Frontiers in Energy Research,2023,11:1275232.

[15] WANG X X,CHEN L H,CHEN Q J,et al.Model and analysis of integrating wind and PV power in remote and core areas with small hydropower and pumped hydropower storage[J].Energies,2018,11(12):3459.

[16] WU X,XU K,WANG Z,et al.Optimized capacity configuration of an integrated power system of wind,photovoltaic and energy storage device based on improved particle swarm optimizer[C]//IEEE.2017 IEEE Conference on Energy Internet and Energy System Integration(EI2).[S.l.]:IEEE,2017:1-6.

[17] HUANG H,LI Y G.Optimization strategy of wind-photovoltaic-energy storage grid peak shaving[C]//IEEE.2021 IEEE 2nd China International Youth Conference on Electrical Engineering(CIYCEE).[S.l.]:IEEE,2021:1-7.

[18] JURASZ J,DABEK P B,KAZIMIERCZAK B,et al.Large scale complementary solar and wind energy sources coupled with pumped-storage hydroelectricity for Lower Silesia(Poland)[J].Energy,2018,161(15):183-192.

[19] 周业荣,李相锐,绳博宇,等.水风光蓄互补发电系统中风光容量配置研究[J].水利水电技术(中英文),2023,54(11):1-14.

[20] 任岩,侯尚辰,韩宇平,等.基于平抑风光波动的矿坑抽水蓄能电站出力与机组特性研究[J/OL].华北水利水电大学学报(自然科学版):1-10[2024-05-20].http://kns.cnki.net/kcms/detail/41.1432.TV.20240603.1751.002.html.

[21] REN Y,YAO X H,LIU D,et al.Optimal design of hydro-wind-PV multi-energy complementary systems considering smooth power output[J].Sustainable Energy Technologies and Assessments,2022,50:101832.

基本信息:

DOI:10.19760/j.ncwu.zk.2025002

中图分类号:TV743

引用信息:

[1]谢建恒,王浩,任岩等.基于卧式抽蓄的多能互补系统容量配置优化研究[J].华北水利水电大学学报(自然科学版),2025,46(01):10-19.DOI:10.19760/j.ncwu.zk.2025002.

基金信息:

国家重点研发计划项目(2023YFC3209404); 桂东电网风光水(火)储互补关键技术研究(GDGHFZ-WT-2023036); 教育部产学合作协同育人项目(220506429133218); 河南省高等学校重点科研项目(23B480001)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文